
Computational Complexity

Reading guide and Homework for Week 05

1 Reading Guide

You can read about:

• The TQBF problem and Savitch’s Theorem. §4.2

• L,NL, reachability is NL-complete. §4.3.

• You should study the proof that NL = coNL, also in §4.3, though we probably didn’t have
enough time to cover it in class.

• We did not teach this, and probably won’t have the time during the course, but there is
a remarkable proof that connectivity in undirected graphs is in L. §21.4.

• We sketched the proof that Sokoban is PSPACE-complete. This is nowhere in the book.
A reasonable proof would use the gadgets of:

Joseph C. Culberson. 1997. Sokoban is PSPACE-complete.

combined with the (much simpler) Turing-machine simulation of an earlier paper (which
does not prove that Sokoban is PSPACE-hard):

Dorit Dor and Uri Zwick. 1996. Sokoban and other motion planning problems.

Possible project for the second part of the course: write down a complete proof of the
PSPACE-hardness of Sokoban, with the above outline.

There were several details that we covered very quickly, and which must be looked at
carefully, in order to properly understand what is going on. This kind of familiarity will be
necessary to understand what’s being said in class.

2 Exercise guide

Before doing the homework, you should train yourself with the following exercises from the
book. Solutions will be provided for the exercises marked with an asterisk (see the webpage).
You should still try to do them by yourself before looking at the solutions.

∗ 4.2.

∗ 4.3.

• 4.7

• 4.8

• 4.9

• How much space is required to execute
a recursive procedure, i.e., a procedure
which may call itself (possibly more than
once)?

∗ 4.10

1



3 Homework

You should turn in solutions for the following exercises before the beginning of the next class.
You can turn in solutions electronically (to bruno.loff+homework@gmail.com), or in paper, in
which case we will scan them ourselves. If you given them in paper, please respect the following
rule, which is meant to make scanning easy:

Solutions should be given in separate (not stapled) a4 sheets of paper, and your name and
number should appear clearly on every page.

You should feel free to discuss the exercises with your colleagues, but when you write down the
answer, you must do it alone, without any help.

Consider the following definition:

1. The problem of reachability in implicitly given graphs is as follows. We are given as input
a sequence 1n, a Turing machine M and a sequence 1t. These three inputs define a graph
G(n,M, t) over the vertex set {0, 1}n, as follows: in G(n,M, t), there is an edge from
vertex x ∈ {0, 1}n to vertex y ∈ {0, 1}n if and only if M(x, y) halts and outputs 1 within
t steps.

Our problem is then:

ImplicitReach = {⟨1n,M, 1t⟩ | there is a path from 0n to 1n in G(n,M, t)}.

Show that ImplicitReach is PSPACE-complete under polytime reductions.

2. A two-player polynomial game is a family of games defined by a number n and a polynomial-
time Turing machineM , as follows. In the length-n version of the game, the game proceeds
in 2n rounds. Player 1 chooses a string x1 ∈ {0, 1}n, and shows it to Player 2. Then
Player 2 chooses a string x2 ∈ {0, 1}n, which can depend on x1, and shows it to Player 1,
etc, with Player 1 playing on odd rounds and Player 2 playing on even rounds, with each
move allowed to depend on the previous moves. In the end, Player 1 wins if M(x1, . . . , xn)
outputs 1, and Player 2 wins otherwise.

Show that in any such game either Player 1 can always win, or Player 2 can always win.

Show that the problem of deciding, when given 1n and M , whether Player 1 or Player 2
can always win, is in PSPACE.

3. (Exercise 4.5 of the book) Show that 2SAT is in NL. For this consider the following hints:

Hint 1. Suppose your formula has a clause x1 ∨ x2. Note that any satisfying assignment
with x1 = 0 must have x2 = 1. The NL-complete problem is directed reachability.
Can you create a graph where reachability means something.

Hint 2. Create a graph with 2n nodes, one for each equality xi = 0/1. Add the above
implications (e.g. for clause x1∨x2, one would add the two directed edges x1 = 0 →
x2 = 1 and x2 = 0 → x1 = 1). What does this graph tell you?

2


