
Computational Complexity 2023 Week 2

Proposed Solutions to Exercises #2

Instructor: Bruno Loff TA: Jorge Pereira

Exercise 2.2)

2COL) Given a graph G it’s easy to see that the representation of a two color assignment to it can be done
such that its length is polynomial in | < G > |, in fact the length of that representation doesn’t need to exceed
the length of the representation of G (particularly in this case where we have only two colors, for instance in
the case where the representation of G comes from an incidence matrix the coloration can be represented by
a diagonal matrix such that each color is represented by either a 0 or a 1; if we adopt a representation of G
by a list, first listing the vertices and then listing tuples stating pairs of connected vertices then the coloring
can come as a list of tuples stating what color each vertex gets, thus as long as we have less colors then the
number of vertices we know that the length of the representation of the coloring must be at most the length of
the representation of G, and if we have more colors than vertices then the coloring problem becomes trivial).

As such the question now is if we can construct a TM that verifies the coloring in polynomial time in the
length of the inputted graph (if the certificate has representation of polynomial length in the length of the graph
then the TM runs in polynomial time in the length of the graph and we can omit the fact that it also has as
input the coloring as far as polynomial running time goes).

The TM must verify that indeed the certificate is valid, namely the formatting is valid, which we can omit
here because it can be done by reading its input only once (here we can include the verification that the coloring
has indeed only two colors), and that the coloring is valid, that is for a vertex with color 0 all adjacent vertices
have color 1 and vice versa.

We’ll call the certificate u (the coloring) and the TM in question M . The TM M will have 4 tapes, tape 1
for the input < G >, tape 2 for the input < u >, tape 3 as the work tape and tape 4 can be the output tape
(we note here that the output tape is in fact superfluous, we add it so as to be consistent with the definitions
in the book, the TM M could simply use the work tape to write the output in the end of the computation, in
fact we don’t even need output we just want to know if M enters an accept state in the end of the computation
or a reject state, because the output is simply a 0 or a 1 it won’t affect the performance of the TM; in case we
do need output then we must assure that its representation has length polynomial in the length of the input
otherwise the TM can’t possibly run in polynomial time)

The TM M starts by reading u and finding a ”first” vertex on it and its corresponding coloring and proceeds
to write the vertex and coloring on the third tape for future reference, then it can read the first tape to find the
adjacent vertices and each time it find an adjacent vertex it reads its coloring on the second tape and compares
it to the color on the third tape, if it’s different it proceed to the next adjacent vertex until no more adjacent
vertices are found (that of course must happen eventually as the graph is finite). If an adjacent vertex with the
same color is found M can enter the reject state, if not it has examined all adjacent vertices and can clear the
contents of tape 3 and proceeds to the next vertex on the second tape and repeats the whole process. Eventually
it will have examined all vertices on tape 2 (and corresponding adjacent vertices) and if no contradiction was
found it can enter the accept state.

Let k be the number of vertices in the graph G. The whole computation of M must terminate after at most
k steps, each step costing | < G > | + (2k + 1)| < u > | because at each step we have to read the contest of
tape 1 only once but read the contest of tape 2 and 3 the same number of times as the number of adjacent
vertices found (trivially at most k) and the content of tape 3 are of size at most < u >, ergo the factor 2 on the
k| < u > |, plus one because we start each step by reading u. This is clearly polynomial in | < G > |.

Therefore we have a certificate with polynomial length in | < G > | and a TM that runs in polynomial time
in the length of the input and verifies if a coloration is indeed valid, that is verifies the certificate, thus 2COL∈NP.

Note that the TM M operates in a very crude way, we could use memoization or any other optimization
technique to make the algorithm faster, or just count the running time better, yet we don’t have to, we don’t
care about polynomial differences in running time, for our purposes the algorithm could run in time n2 or
n200000 and the conclusion would be the same.
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3COL) Analogous to the previous solution (if you can’t do this one by using the previous solution then you
didn’t understand the previous solution and need to spend more time with it!).

CONNECTED) Here we can start from an arbitrary vertex and check if it’s connected to every other vertex
using breadth first search1. If we have k vertices we have k−1 pairs of vertices to check if each pair is connected
in G, thus we run breadth first search k − 1 times on G. As is knows breadth first search runs in polynomial
time on its input, say the polynomial is p(x), then the running time of running it k − 1 times if less than
| < G > |p(| < G > |) which is still a polynomial in | < G > |. As such we can conclude that CONNECTED∈P
and so is in NP.

If we just want to prove that CONNECTED is in NP then we could use the k−1 paths between a particular
vertex and any other vertex as the certificate, it clearly has representation of polynomial length in | < G > | as
we can just list each path as a (sub) list of vertices and so in total the size of the certificate must be O(| < G > |2)
(I say big O | < G > |2 because as we concatenate each list (representing a path) we must have a proper way
to delimit each list or else the TM won’t have a way to know where each list start and the next begins and so
that will cost some bits, refer to the section on ”Representing pairs and tuples” of the book for an example).

With that, all we have to do is build a TM that verifies that each path given is valid and that all vertices
are reached, we can as before use a 3 tape TM M (plus an output tape if desired). To do that all we have to do
is check that we have k − 1 sub-lists and the vertices at the end of each sub-list plus the initial vertex in a sub
list (any sub-list they all start with the same vertex) give all the vertices of G, with that done we proceed to
verify if all paths are valid. That is only a matter of going over a path (sub-list) and checking if each successive
vertex is adjacent to the previous by reading that information on < G >.

Let M ’s first tape contain < G > and the second contain the mentioned certificate, call it u. Then (assuming
the process of verifying the format of u was already done, which can include checking the number of sub-lists
(we can use tape 3 to store the counter)) we first read u to extract the first vertex of the first sub-list and all
the last vertices of each list and store it in tape 3, then we go over tape 1 to check if tape 3 contains all vertices,
if this passes we proceed to check the paths (sub-lists). To to this all M has to do is start reading u from the
start and uppon reading a vertex it stores it in tape 3, goes to the next vertex on the list and then reads the
first tape to check if the vertex on tape 3 and the vertex it read on tape 2 are adjacent, if so it proceed to write
the vertex it read on tape 2 on tape 3 and repeats the process until the end of the sub-list, and then it goes to
the next sub-list and so on and so forth.

Note that instead of using tape 3 to write both vertices we are checking for adjacency we only store the first
on tape 3 and use tape 2 as the one that stores the second vertex, after all the head on tape 2 doesn’t need
to leave the region where that vertex is stored and that region must be properly delimited or else M wouldn’t
know where a vertex begins and the other ends, this is a nice time to ponder on the necessity of the third tape,
I mean we do know that we don’t even need three tapes to have a polynomial running time but we don’t need
to go that far yet. Note that the reason we use here and in the TM used for the 2COL language the third
tape is because we want to make it easy for the TM to know where to search for the information it needs, but
this can be achieved by extending the alphabet of the tapes to included a marker that marks the position of
interest for future reference, and as we know extending the alphabet of the tapes can be reversed with just a
polynomial slowdown. So this is a nice example of the use of the robustness of the TM model to assist us in
the construction of the machines we need. So in short, if we are just comparing information we don’t need an
additional work tape beyond the input tape(s).

To conclude all is left to do is analyze the running time of the machine. So we first read < u > and write
a list of vertices in the third tape to see if all vertices are reached, requiring us to read < G > just once, so
2| < u > |+ | < G > | operations in the first step. In the second step for each vertex we read in < u > we read
< G > to check for adjacency having a total cost of at most | < u > || < G > | plus the cost of writing each
time a vertex in the third tape that in total can’t cost more that | < u > |, thus is total the cost of running M
must be less than 3| < u > |+ | < G > |+ | < u > || < G > | which is polynomial in the length of < G >. So we
have a certificate whose representation has polynomial length in | < G > | and a TM that runs in polynomial

1To see a description of the breadth first search algorithm refer to ”Introduction to Algorithms, Third Edition by Thomas
H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein” Sec. 22.2. The algorithms there are described in a RAM
computation model and as was stated last week the Turing machine model is capable of simulation a RAM model with only
a polynomial slowdown (this can also be seen in ”Introduction to Automata Theory, Languages, and Computation by John E.
Hopcroft, Jeffrey D. Ullman” page 167). If you need any of the books I proposed as reading materials please email me and I’ll
provide them to you.
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time in | < G > |, thus the conclusion follows.

Who’s in P?
Now we answer the final question, which of these languages are also in P. As we’ve seen CONNECTED is

in P; 3COL is in fact NP-complete (refer to exercise 2.21) and so is only in P if P=NP.
Finally 2COL is in P, to see that note that G can only have two possible colorings because a given vertex

can have only two colors assigned to it and each possibility result in a full coloration of the graph by inductively
coloring its adjacent vertices. It’s easy to see that we can produce those colorings in polynomial time, and
with that produce two certificates that we can feed to the verifier M described for 2COL (that also runs in
polynomial time in | < G > |), thus in polynomial time we can determine if a given graph is 2-colorable. (if you
don’t fell completely comfortable with this answer do try to fill in the details)

Exercise 2.4)

Given the system Ax ≤ b (where the ≤ is applied component wise), if it has a rational (component wise)
solution a then Aa = ba where ba is rational (considering a and A are) and ba ≤ b. By 2.3) the system Ax = ba
has a solution x′ with representation whose length is polynomial in | < A, ba > | and analyzing the solution to
2.3) one can see that that solution x′ is (or can be) rational. If | < x′ > | is not polynomial in | < A, b > | then
| < b > | is not polynomial in | < ba > |, but for x′ both b and ba are constant, contradicting the previous state-
ment (the rationale here is that given two numbers p, q one can always find a number c such that p = cq), thus
| < A, b > | is polynomial in | < A, ba > | and so x′ is a solution to Ax ≤ b whose representation has polynomial
length in | < A, b > |. So we have a certificate (< x′ >) in the required conditions of the definition of NP (Def.
2.1 in the book), now it’s straightforward to see that a TM that runs in polynomial time in | < A, b, x′ > |
exists for we need only for it to compute the functions SUM, PROD and ≤ (lexicographic comparison) all of
which run in polynomial time (that is we need only to compute Ax′ and then verify that Ax′ ≤ b). Now if A
is a m× n matrix then we compute the PROD function mn times, the SUM function m(n− 1) times and the
≤ function m times and m = O(| < A, b, x′ > |), n = O(| < A, b, x′ > |) thus in total we’re computing these
function a polynomial number of times in | < A, b, x′ > | (to be exact 2mn = O(| < A, b, x′ > |) executions of
these functions, combined)2 therefore M runs in polynomial time in | < A, b, x′ > |.

Exercise 2.10)

Given languages L1, L2 ∈ NP there exist TM verifiers M1 and M2 respectively associated to the languages
and we can assume these are single tape TM’s.

Let’s deal with the case of the union of the languages and then their intersection. We can construct a TM
M that simulates M1 and then M2 (simulates both sequentially) and if M1 enters an accept state then M
enters an accept state, otherwise it proceed to simulate M2 and if it enter an accept state M enter and accept
state, otherwise if both M1 and M2 reject (enter a reject state) then M enters a reject state. This sequential
simulation of M1 and M2 can be done by modifying the transition function of M1 such that if M1 enter the
reject state then M enters the initial state of M2 and thus proceed to work as per the transition function of M2

(effectively extending the transition function of M1), of course more states have to be added to allow M itself to
have and be capable of entering an accept and reject state and also manage the tape (for more on this refer to
”Introduction to Automata Theory, Languages, and Computation by John E. Hopcroft, Jeffrey D. Ullman” Sec.
7.4 and also Example 8.2). This being done we note that given x ∈ L1∪L2 then there exists a certificate u for x
(pertaining to L1 or L2 depending on where x is) and if we feed < x, u > to M then either the simulation of M1

or the simulation of M2 will accept and thus M will accept, more over M runs in polynomial time for M1 and
M2 do so and M simply runs both TM’s in sequence (a sum of polynomials is a polynomial), to be more precise
if p1(n) and p2(n) are the polynomials associated with the running time of M1 and M2 respectively then M
runs in O(p1(n)+ p2(n)). Therefore for each x ∈ L1 ∪L2 we have a certificate with representation whose length
is polynomial in | < x > | and a TMM that runs in polynomial time of the length of its input, ergo L1∪L2 ∈ NP.

We now proceed to the case where we consider the intersection of the languages. Here we construct a TM M
with two tapes that simulates M1 and M2 simultaneously (in parallel, one on each tape). The TM M enters an

2If asymptotic notation (big O) is still daunting to you I strongly suggest going over it in the book ”Introduction to Algorithms,
Third Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein” Sec. 3.1.
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accept state if both simulations accept (enter an accept state) otherwise it rejects (again you can refer to ”Intro-
duction to Automata Theory, Languages, and Computation by John E. Hopcroft, Jeffrey D. Ullman”, Sec. 7.4
and 7.5 or even ”Introduction to the Theory of Computation by Michael Sipser” Sec. 3). It should be clear that
this TM runs in polynomial time, with its running time upper bounded by the maximum running time between
M1 and M2 (using the polynomials p1 and p2 defined as before the running time of M is O(max(p1(n), p2(n)))).
Given x ∈ L1 ∩ L2 then there exist certificates u1 and u2 pertaining to M1 and M2 respectively and thus their
concatenation < u1, u2 > has length polynomial in | < x > |, we feed < x,< u1, u2 >> to M and then M
simulates M1 on < x, u1 > and M2 on < x, u2 > resulting in M entering an accept state for both simulations
will accept by their definition and the definition of the certificates u1 and u2. Therefore for each x ∈ L1∩L2 we
have a certificate whose representation has length polynomial in | < x > | and a TM M that runs in polynomial
time in the length of (the representation of) its input (even after we modify it to run on a single tape), and so
L1 ∩ L2 ∈ NP.

Note that the TM M we defined for the language L1 ∪ L2 could, with small modifications, be used for the
language L1 ∩ L2 and vice versa.


