Computational Complexity
Example Solutions

Henrique Campos Navas

2023-2024

Homework 1

1.1 for addition

Our Turing Machine M will be described by a tuple (I', @, §) and it will have an input tape, an
output tape and a work tape. Besides the usual symbols 0, 1,> and [J we will add a separation
character # so we can encode our pairs of numbers simply as a sequence of bits, followed by #
followed by another sequence of bits, with both sequence of bits translating to natural numbers
in the standard way. As such, we define I as {0, 1,>, [, #}.

Now we want to describe our states. ¢s, g, will be the starting state and the halting state
respectively. For adding the numbers, it is useful to start in the units place, so first we will
read the input in reverse (note that addition is commutative), and for such we will move the
input tape’s head to the right until we find the first [J character, and for this we will use a g,,,
state (move right). Now we will read y and write it in the work tape in reverse until we find a
character and for such we will use a new state ¢,; (read and move left). Then we will need
to move the work tape head to the beginning again so we can start adding x to y, and we will
use a state ¢, (move leaf). Afterwards we will start adding y and z, and we will need to use
two new states: ¢. and g,. (for when we need to carry a 1 and for when we have no carry).
After adding x and y in reverse order on the work tape, we will need to write it in the correct
order on the output tape. To do this, we simply need to start writing it in the correct order
after we are finished with adding y and x and for that we will use our last state, g, (write).

As SUCh7 Q = {QS7 dhy Qmrs drls Qmis des e, Qw}
As described above, we will have the following transition function ¢ :

Input Work State | Move Move Move Write Write in | New
Symbol | Symbol Input | Work | Output | in Work | Output | State
Head Head Head Tape Tape
> > s R S S > > Qmr
0 O G R S S > > G
1] G R S S > > G
O G R S S > > G
[[G L R S > > Qr
0 0 Qri L R S 0 > Gri
1 UJ dri L R S 1 > qri
0 dri S L S O > dml
0 qmi S L S 0 > qmi
1 qmi S L S 1 > qml
> Gmi L R S > > Qne
0 0 Gne L R S 0 O Gne
0 O Gne L R S 0 O Gne
> 0 Gne S R S 0 O Qne
> O Gne S L S 0 O Gw
0 1 Gne L R S 1 O Gne
> 1 Gne S R S 1] Gne
1 0 Gne L R S 1] Gne
1 O Gne L R S 1 O Gne
1 1 Gne L R S 0 OJ qe
0 0 qe L R S 1 O Gne
0 O qe L R S 1 O Gne
> 0 e S R S 1 O Gne
> O e S S S 1 O G
0 1 qe L R S 0 O Qe
> 1 qe L R S 0 OJ Qe
1 0 qe L R S 0 O qe
1 O qe L R S 0 OJ qe
1 1 qe L R S 1 [e
> 1 G S L S 1 1 Guw
> 0 Gw S L S 0 0 Qu
> > G S S S > 0 qn

Assume every other input tape symbol, work tape symbol and state tuple goes into the the
halting state immediately. Note that we need to specify some scenarios for when the numbers
have different lengths in which we treat >, as 0’s (but we refrain from moving the input

head).
With this, our specification for a Turing machine M = (', @, §) is complete.

1.9

Let M = (I, @, 6) be a RAM Turing Machine that computes a Boolean function in 7'(n) time.
We will construct the Turing Machine M’ = (T, Q’, ") that simulates M in DTIME(T (n)?),
with the same number of tapes, including one work tape A that will simulate the memory tape.

First, we copy the alphabet and all of the states and transitions which do not involve @access-
Then, we ”split” gaccess in the following manner. We create a state gaccess begin, Which has the
same transitions into the state as ¢access, and a state access end, Which has the same transitions
from the state as Gaccess-

Between these two states, M’ will simulate the memory access function of a RAM TM in at
most DTIME(T (n)) operations, requiring some extra states to do it. Regardless of whether
we have an R or a W, we can first read the number ¢ to the left of this symbol, in some
manner which depends on the way numbers are encoded, and move the tape A head to the
corresponding place (for simplicity’s sake, assume we first move it all the way to the left so we
do not have to worry about its current position).

Example: If 7 is encoded in binary, with a symbol different from 0 or 1 to its left, we can, for
example, do the following: First we create four new symbols, 0’, 0”, 1" and 1”. Then, whenever
we read a bit, we will want to move the corresponding power of 2 in the memory tape if it
is a 1. We can do this in a recursive-inductive manner. If there are no bits to its right, then
we move only a single step, otherwise, we change 0 to 0/ or 1 to 1’ and move to the right and
perform the same corresponding amount of movements, then we go back to the original bit
and we will see an 0/ and a 1’, which we will change to either 0” or 1” and which will tell us to
perform the previous steps again, thus doing twice the amount of steps as before, when we find
a 0” or a 1” we know we can finally move to the left. If the original bit is a 1, we actually move
A’s head to the right, if it is 0 we do not, but we still perform some ”phantom” movements so
the recursion still works as intended.

Now, we need to move the work tape head back to the symbol, which we can do easily by
simply going right until we find an R or a W (and fixing alterations done above if necessary).
After reading this symbol, we either write the symbol A[i] in the work tape, to the left of R,
or we change the symbol A[i] to the one to the left of W, with both these operations requiring
only a couple of new auxiliary states.

This M’ will run in the same manner as M, except when it finds ¢access, Which happens at
most T'(n) times. Each time it finds @access, it Will need to simulate memory access, which takes
at most the size of the used memory tape!, which in T'(n) operations is at most T'(n), times
some constant. Thus, M’ simulates M in DTIME(T(n)?).

1.14

We will assume that our graph is received as an adjacency matrix in the following format: #,
followed by n bits which indicate if the first node is connect to other nodes, followed by #,
followed by n bits which indicate if the second node is connect to other nodes, ..., #, followed
by n bits which indicate if the n-th node is connect to other nodes, followed by #.

We also note that these examples are not optimal.

(a)

We do a BFS algorithm. On a work tape, we mark the first space with an A (accessible) and
the following n — 1 spaces with an N (not yet accessible). For each A on this tape, we go to
the associated segment of the adjacency matrix and for each 1 we change N on the work tape
to an A. Afterwards, we change this A to a V' (visited). At some point, we will no longer have
any A’s. At this point, we see if we have any N. If so, we output a 0. Otherwise, we output a
1. This algorithm clearly takes polynomial time, as each node is visited at most once and each
step takes O(n?) time?.

Note: some of these steps, such as moving to the correct segment of the input tape, an extra
work tape focused on performing this operation can make things rather simple, by helping us

'We assume we do not have huge gaps in the memory tape, otherwise by having a RAM TM that writes
a representation for an exponentially big address and uses that address without using the ones before, this
solution would not suffice. We would need to order the addresses in some manner or change our encodings.

2Changing the N’s to A’ can be done in linear time, the most time consuming part is moving the input
header to the correct segment.

count how much we have to move.

(b)

A simple way of doing this is to check every triplet. For doing so, we will have 3 work tapes,
which used space n, and check every triplet by first iterating across every space in the first
tape, only afterwards moving the second head one space to the right and resetting the first one,
and only after moving the second head n times do we move the third one. We only stop once
every head is at the last position. We can use these tapes to simply count to which segment
do we need to go and which position of the segment do we want to check. If at any point we
find a triangle, we output 0, if we check every triplet with no issues we output a 1. Each check
takes O(n?) time, and we perform n?® checks, so this problem is in DTIME(n®) and therefore
in P.

3SUM is in P

We check every triplet in the same manner as the previous exercise. In another tape, we add
the numbers together using a similar algorithm to the one in exercise 1.13. If the the sum is 0
at any point, we halt and output 1, if we check every triplet without any success, we output 0.
We need to check n? triplets and each check takes O(nlog(n)) to arrive at the numbers in the
input tape and O(log(n)) to perform the sums, for a total of O(n*log(n)) time.

3SUM in time O(n?log(n)) by a RAM TM

For each number z;, we write 1 on the memory tape A in A[x;] (we can perform the trick of
adding n® to every number so nothing is negative?). This can be done in by simply copying
the input in time O(nlogn) and then writing W, 1 after each number. Now, for each pair (i, j),
we check if A[—z; — ;] is 1. If it is, then we output 1, and if we check every pair without
success we output 0. In order to do this in O(n?log(n)) we need to be careful, as each check
needs to be done in O(log(n)) time. First, we write z; in another tape and copy it to an
extra tape. Then, we for each candidate z; we check them by order so we never need to go
back, and we can start with z;. We add it to z; in O(log(n)) and if we don’t get a successful
0 sum with can simply copy back the x; from the extra tape instead of needing to go look
for it in the input tape. Thus, we perform O(nlog(n)) to set up each z;, as we need to go
there in time O(nlog(n)), after finishing the tests with the previous x;_1, copy it twice in time
O(log(n)) and then perform O(log(n)) steps to add the numbers together and so we can check
the memory tape and then we move the head to the next number, also in time O(log(n)).
Thus, this algorithm runs in time (n?log(n)) as we hoped.

3Here we have negative numbers which we did not account for. A simple way of overcoming this in this case
is by adding n3 to every number and then instead of checking if the sum is 0 we check if it is 3n3.
4See footnote 3.

